
    *i                      F    S r S/rS rS rS rS rS rS r " S S5      rg	)
zG
Mixin classes for custom array types that don't inherit from ndarray.
NDArrayOperatorsMixinc                 @     U R                   SL $ ! [         a     gf = f)z)True when __array_ufunc__ is set to None.NF)__array_ufunc__AttributeError)objs    N/var/www/html/ai-backend/venv/lib/python3.13/site-packages/numpy/lib/mixins.py_disables_array_ufuncr      s*    ""d** s    
c                 *   ^  U 4S jnSU S3Ul         U$ )z>Implement a forward binary method with a ufunc, e.g., __add__.c                 @   > [        U5      (       a  [        $ T" X5      $ Nr   NotImplementedselfotherufuncs     r   func_binary_method.<locals>.func   s     ''!!T!!    ____name__r   namer   s   `  r   _binary_methodr      s    " bMDMKr   c                 *   ^  U 4S jnSU S3Ul         U$ )zAImplement a reflected binary method with a ufunc, e.g., __radd__.c                 @   > [        U5      (       a  [        $ T" X5      $ r   r   r   s     r   r   &_reflected_binary_method.<locals>.func   s     ''!!U!!r   __rr   r   r   s   `  r   _reflected_binary_methodr      s    " $rNDMKr   c                 *   ^  U 4S jnSU S3Ul         U$ )zAImplement an in-place binary method with a ufunc, e.g., __iadd__.c                    > T" XU 4S9$ )N)out r   s     r   r   $_inplace_binary_method.<locals>.func&   s    Ttg..r   __ir   r   r   s   `  r   _inplace_binary_methodr&   $   s    /$rNDMKr   c                 B    [        X5      [        X5      [        X5      4$ )zEImplement forward, reflected and inplace binary methods with a ufunc.)r   r   r&   )r   r   s     r   _numeric_methodsr(   ,   s$    5'$U1"5/1 1r   c                 *   ^  U 4S jnSU S3Ul         U$ )z.Implement a unary special method with a ufunc.c                    > T" U 5      $ r   r#   )r   r   s    r   r   _unary_method.<locals>.func5   s    T{r   r   r   r   s   `  r   _unary_methodr,   3   s    bMDMKr   c                   F   \ rS rSrSrSSKJr  Sr\	" \R                  S5      r\	" \R                  S5      r\	" \R                  S5      r\	" \R                   S	5      r\	" \R$                  S
5      r\	" \R(                  S5      r\" \R.                  S5      u  rrr\" \R6                  S5      u  rrr\" \R>                  S5      u  r r!r"\" \RF                  S5      u  r$r%r&\" \RN                  S5      u  r(r)r*\" \RV                  S5      u  r,r-r.\" \R^                  S5      u  r0r1r2\	" \Rf                  S5      r4\5" \Rf                  S5      r6\" \Rn                  S5      u  r8r9r:\" \Rv                  S5      u  r<r=r>\" \R~                  S5      u  r@rArB\" \R                  S5      u  rDrErF\" \R                  S5      u  rHrIrJ\" \R                  S5      u  rLrMrN\O" \R                  S5      rQ\O" \R                  S5      rS\O" \R                  S5      rU\O" \R                  S5      rWSrXg)r   ;   a  Mixin defining all operator special methods using __array_ufunc__.

This class implements the special methods for almost all of Python's
builtin operators defined in the `operator` module, including comparisons
(``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
deferring to the ``__array_ufunc__`` method, which subclasses must
implement.

It is useful for writing classes that do not inherit from `numpy.ndarray`,
but that should support arithmetic and numpy universal functions like
arrays as described in :external+neps:doc:`nep-0013-ufunc-overrides`.

As an trivial example, consider this implementation of an ``ArrayLike``
class that simply wraps a NumPy array and ensures that the result of any
arithmetic operation is also an ``ArrayLike`` object:

    >>> import numbers
    >>> class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
    ...     def __init__(self, value):
    ...         self.value = np.asarray(value)
    ...
    ...     # One might also consider adding the built-in list type to this
    ...     # list, to support operations like np.add(array_like, list)
    ...     _HANDLED_TYPES = (np.ndarray, numbers.Number)
    ...
    ...     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
    ...         out = kwargs.get('out', ())
    ...         for x in inputs + out:
    ...             # Only support operations with instances of
    ...             # _HANDLED_TYPES. Use ArrayLike instead of type(self)
    ...             # for isinstance to allow subclasses that don't
    ...             # override __array_ufunc__ to handle ArrayLike objects.
    ...             if not isinstance(
    ...                 x, self._HANDLED_TYPES + (ArrayLike,)
    ...             ):
    ...                 return NotImplemented
    ...
    ...         # Defer to the implementation of the ufunc
    ...         # on unwrapped values.
    ...         inputs = tuple(x.value if isinstance(x, ArrayLike) else x
    ...                     for x in inputs)
    ...         if out:
    ...             kwargs['out'] = tuple(
    ...                 x.value if isinstance(x, ArrayLike) else x
    ...                 for x in out)
    ...         result = getattr(ufunc, method)(*inputs, **kwargs)
    ...
    ...         if type(result) is tuple:
    ...             # multiple return values
    ...             return tuple(type(self)(x) for x in result)
    ...         elif method == 'at':
    ...             # no return value
    ...             return None
    ...         else:
    ...             # one return value
    ...             return type(self)(result)
    ...
    ...     def __repr__(self):
    ...         return '%s(%r)' % (type(self).__name__, self.value)

In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
the result is always another ``ArrayLike``:

    >>> x = ArrayLike([1, 2, 3])
    >>> x - 1
    ArrayLike(array([0, 1, 2]))
    >>> 1 - x
    ArrayLike(array([ 0, -1, -2]))
    >>> np.arange(3) - x
    ArrayLike(array([-1, -1, -1]))
    >>> x - np.arange(3)
    ArrayLike(array([1, 1, 1]))

Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
with arbitrary, unrecognized types. This ensures that interactions with
ArrayLike preserve a well-defined casting hierarchy.

    )umathr#   ltleeqnegtgeaddsubmulmatmultruedivfloordivmoddivmodpowlshiftrshiftandxorornegposabsinvertN)Yr   
__module____qualname____firstlineno____doc__numpy._corer0   um	__slots__r   less__lt__
less_equal__le__equal__eq__	not_equal__ne__greater__gt__greater_equal__ge__r(   r7   __add____radd____iadd__subtract__sub____rsub____isub__multiply__mul____rmul____imul__r:   
__matmul____rmatmul____imatmul__true_divide__truediv____rtruediv____itruediv__floor_divide__floordiv____rfloordiv____ifloordiv__	remainder__mod____rmod____imod__r>   
__divmod__r   __rdivmod__power__pow____rpow____ipow__
left_shift
__lshift____rlshift____ilshift__right_shift
__rshift____rrshift____irshift__bitwise_and__and____rand____iand__bitwise_xor__xor____rxor____ixor__
bitwise_or__or____ror____ior__r,   negative__neg__positive__pos__absolute__abs__rH   
__invert____static_attributes__r#   r   r   r   r   ;   s   M\ (I
 BGGT*FBMM40FBHHd+FBLL$/FBJJ-FB,,d3F #32665"AGXx"22;;"FGXx"22;;"FGXx+;
		8,(J[.>
	/#+K|1A
2%.L-"22<<"GGXx		84J*299h?K #3288U"CGXx+;
x,!(J[+;
,"(J["22>>5"IGXx"22>>5"IGXx/tDFGW BKK/GBKK/GBKK/Gryy(3Jr   N)	rL   __all__r   r   r   r&   r(   r,   r   r#   r   r   <module>r      s>    #
#1y4 y4r   